Home>Faculty

Sarah Perrett(Guest), Ph.D, Prof.

Principal Investigator
National Laboratory of Biomacromolecules, IBP


Research Interests: (1) Molecular mechanisms of amyloid assembly, (2) Protein folding, post-translational modification & quality control


Email: sperrett@ibp.ac.cn


Tel: 010-64889870


Address: 15 Datun Road, Chaoyang District, Beijing, 100101, China


Chinese personal homepage

Biography

1992    BA in Chemistry, University of Cambridge, UK

1997    PhD in Protein Chemistry, University of Cambridge

1996 - 1997 Post-Doctoral Research Associate, University of Cambridge

1997 - 2000 College Research Fellow, University of Cambridge

1999 - 2000 Chinese language study, National University of Singapore

2000 - 2003 1851 & Royal Society Research Fellow, CAS Institute of Biophysics, Beijing

2003 - Principal Investigator, CAS Institute of Biophysics

Awards

2015 CAS Young International Scientific Collaborator Prize (with Prof. Tuomas Knowles, University of Cambridge)

2015 OBE for services to UK/China relations in the scientific field

2010 Beijing Municipal Technology Prize (1st Class, with Prof. Xiyun Yan, IBP & others)

Membership in Academies & Societies
Research Interests

The structure and function of a given protein are intimately related. A number of human diseases are due to protein misfolding or aggregation. Molecular chaperones play a crucial role in the complex quality control machinery of the cell, to ensure that proteins fold and assemble correctly, and to prevent accumulation of misfolded or aggregated proteins. Over the years, our laboratory has applied a multidisciplinary approach to study molecular mechanisms of amyloid assembly, as well as protein folding, post-translational modification, and quality control. Current research directions include:

1. Single molecule study of the molecular mechanisms of amyloid assembly

Single-molecule techniques provide a powerful approach to study the conformational distributions and dynamic changes of biomacromolecules, and to probe sparsely populated components in complex systems. We are studying the detailed mechanism of fibril assembly for functional and disease-related amyloids, in order to reveal the origins for the difference in toxicity between pathogenic and functional amyloid fibrils, and to understand how biological systems regulate protein folding and misfolding.

2. Biological properties of amyloid-based nanomaterials

We are also studying how the unique properties of amyloid - such as high strength, stability and tunable assembly - can be exploited in the design of novel nanomaterials with biological function.

3. Structure, conformational dynamics and function of molecular chaperones

We are using a combination of biochemistry, cell biology, single molecule and structural biology techniques to study the conformational dynamics of the molecular chaperones Hsp70 and Hsp40, in order to understand the detailed mechanisms by which they control protein folding and misfolding. We are also examining the role of post-translational modifications in regulating the structure and function of Hsp70.

Grants
Selected Publications

Selected from a total of 85 papers

1. Wen, J., Hong, L., Krainer G., Yao, Q.Q., Knowles T.P.J., Wu, S.* &Perrett, S.*(2021) Conformational expansion of Tau in condensates promotes irreversible aggregation.J. Am. Chem. Soc.In press.

2. Zhang, H., Gong, W., Wu, S., &Perrett, S.*(2021) Studying protein folding in health and disease using biophysical approaches.Emerg. Top. Life Sci.5, 29-38.

3. Yang, J., Gong, W., Wu, S., Zhang, H.* &Perrett, S.*(2021) PES inhibits human inducible Hsp70 by covalent targeting of cysteine residues in the substrate binding domain.J. Biol. Chem.296, 100210.

4. Yang, J.,Perrett, S., Wu, S.* (2021) Single molecule characterization of amyloid oligomers.Molecules26, 948.

5. Yao, X., Chen, C., Wang, Y., Dong S., Liu, Y.J., Li, Y., Cui, Z., Gong, W.,Perrett, S., Yao, L., Lamed, R., Bayer, E.A., Cui, Q., Feng, Y.G.* (2020) Discovery and mechanism of a pH-dependent dual-binding-site switch in the interaction of a pair of protein modules.Science Advances6, eabd7182.

6. Yang, J., Dear, A.J., Yao, Q., Liu, Z., Dobson, C.M., Knowles, T.P.J., Wu, S.* &Perrett, S.*(2020) Amelioration of aggregate cytotoxicity by catalytic conversion of protein oligomers into amyloid fibrils.Nanoscale12, 18663-18672.

7. Yang, J., Zhang, H.*, Gong, W., Liu, Z., Wu, H., Hu, W., Chen, X., Wang, L., Wu, S., Chen, C.* &Perrett, S.*(2020) S-Glutathionylation of human inducible Hsp70 reveals a regulatory mechanism involving the C-terminal α-helical lid.J. Biol. Chem.295, 8302-8324.

8. Wu, S. Hong, L., Wang, Y., Yang, J., Yang J., Zhang, H. &Perrett, S.*(2020) A kinetic view of the conformational cycle of Hsp70 reveals the importance of the dynamic and heterogeneous nature of Hsp70 for its function.PNAS117, 7814-7823.

9. Dear, A.J., Michaels, T.C.T., Meisl, G., Klenerman, D., Wu, S.,Perrett, S., Linse, S., Dobson, C.M., and Knowles, T.P.J.* (2020) Kinetic diversity of amyloid oligomers.PNAS117, 12087-12094.

10. Yao, Q., Hong, L., Wu, S.* &Perrett, S.*(2020) Distinct microscopic mechanisms for the accelerated aggregation of pathogenic Tau mutants revealed by kinetic analysis.PhysChemChemPhys22, 241-7249.

11. Yang, J., Dear, A.J., Michaels, T.C.T., Dobson, C.M., Knowles, T.P.J.K.*, Wu, S.* &Perrett, S.*(2018). Direct observation of oligomerization by single molecule fluorescence reveals amulti-step aggregation mechanism for the yeast prion protein Ure2.J. Am. Chem. Soc., 140, 2493-2503.

12. Gong, W., Hu, W., Xu, L., Wu, H., Wu, S., Zhang, H., Wang, J., Jones, GW.* &Perrett, S.*(2018).The C-terminal GGAP motif of Hsp70 mediates substrate recognition and stress response in yeast.J. Biol. Chem.293, 17663-17675.

13. Xu, L., Gong, G.*, Cusack, S.A., Wu, H., Loovers, H.M., Zhang, H.,Perrett, S.& Jones G.W.* (2018). The β6/β7 region of the Hsp70 substrate-binding domain mediates heat shock response and prion propagation.Cell. Mol. Life Sci., 75, 1445-1459.

14. Lou, F., Yang, J., Wu, S.* &Perrett, S.*(2017). A co-expression strategy to acheive labeling of individual subunits within a dimeric protein for single molecule analysis.ChemComm53, 7971-8094.

15. Yang, W., Willemse J., Sawyer E.B., Lou F., Gong, W., Zhang, H., Gras, S.L.*, Claessen, D.* &Perrett, S.*(2017). The propensity of the bacterial rodlin protein RdlB to form amyloid fibrils determines its function in Streptomyces coelicolor.Scientific Reports7, 42867.

16. Zhang, H., Yang, J., Si, W., Gong, W., Chen, C.* &Perrett, S.*(2016). Glutathionylation of the bacterial Hsp70 chaperone DnaK provides a link between oxidative stress and the heat shock response.J. Biol. Chem.291, 6967-6981.

17. Zhou, X.M., Shimanovich, U., Herling, T.W., Wu, S., Dobson, C.M., Knowles, T.P.J.* &Perrett, S.*(2015) Enzymatically-active microgels from self-assembling protein nanofibrils for microflow chemistry.ACS Nano9, 5772-5781.

18. Rees, J.S., Li, X.W.,Perrett, S.*,Lilley, K.S.* & Jackson, A.P.* (2015) Protein neighbours and proximity proteomics.Molecular & Cellular Proteomics14, 2848-2856. (Invited Review)

19. Wu, H., Gong, W., Yao, X., Wang, J.,Perrett, S.*& Feng, Y.* (2015). Evolutionarily conserved binding of translationally-controlled tumor protein to eukaryotic elongation factor 1B.J. Biol. Chem.290, 8694-710.

10. Zhou, X.M., Entwistle, A., Zhang, H., Jackson, A.P., Mason, T.O., Shimanovich, U., Knowles, T.P.J., Smith, A.T., Sawyer, E.B.* &Perrett, S.*(2014). Self-assembly of amyloid fibrils that display active enzymes.ChemCatChem6, 1961-1968.

21. Li, X.W., Rees, J.S., Lilley, K.S., Howard, J.A., Zhang, H., Peng, X., Hamaia, S.W., Farndale, R.W.,Perrett, S.*& Jackson, A.P.* (2014). New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay.J. Biol. Chem.289, 14434-14447. (Highlighted as a "Key Scientific Article" in Global Medical Discovery. Highlighted in Bulletin of the Chinese Academy of Sciences. Chapter invited for Current Protocols. Review invited for Mol. Cell. Proteom.)

22. Gong, W, Wang, J.,Perrett, S.*& Feng, Y.* (2014). RBBP1 has an interdigitated double Tudor domain with DNA-binding activity.J. Biol. Chem.289, 4882-4895.

23. Xu, L.Q., Wu, S., Buell, A.K., Cohen, S.I.A., Chen, L.J., Hu, W.H., Cusack, S.A., Itzhaki, L.S., Zhang, H.*, Knowles, T.P.J., Dobson, C.M., Welland, M.E., Jones, G.W. &Perrett S.*(2013). Influence of specific Hsp70 domains on Ure2 fibril formation in vitro.Phil. Trans. Roy. Soc. B368, 20110410. (Invited submission)

24. Zhu, M.,Perrett, S.& Nie, G.* (2013). Understanding the particokinetics of engineered nanomaterials for safe and effective therapeutic applications.SMALL9, 1619-34.

25. Truman, A.W., Kristjansdottir, K., Wolfgeher, D., Hasin, N., Polier, S., Zhang, H.,Perrett, S., Prodromou, C., Jones, G.W. & Kron, S.J.* (2012). CDK-dependent Hsp70 phosphorylation controls G1 cyclin abundance and cell cycle progression.CELL151, 1308-1318.

26. Sawyer, E.B., Claessen D., Gras, S.L. &Perrett, S.*(2012) Exploiting amyloid: how and why bacteria use cross-β fibrils.Biochem. Soc. Trans.40, 728-34. (Invited Review)

27. Chen, L.J., Sawyer, E.B. &Perrett, S.*(2011). The yeast prion protein Ure2: insights into the mechanism of amyloid formation.Biochem. Soc. Trans.39, 1359-1364. (Invited review)

28. Li, Y., Zhou, Y., Wang, H.Y.,Perrett, S., Zhao, Y.,* Tang, Z.* & Nie, G.* (2011). Chirality of gluthathione surface coating affects the cytotoxicity of quantum dots.Angew. Chem. Int. Ed. Engl.50, 5860-5864. (Highlighted in Nature Materials (2011) 10, 480.)

29. Wang, Y.Q., Buell, A.K., Wang, X.Y., Welland M.E., Dobson, C.M., Knowles, T.P.J.* &Perrett, S.*(2011). Relationship between prion propensity and the rates of individual molecular steps of fibril assembly.J. Biol. Chem.286, 12101-12107. (On the Cover.)

30. Zhang, H., Xu, L.Q. &Perrett, S.*(2011). Studying the effects of chaperones on amyloid fibril formation.Methods53, 285-294. (Invited Review)

31. Zhang, Z.R. &Perrett, S.*(2009). Novel glutaredoxin activity of the yeast prion protein Ure2 reveals a native-like dimer within fibrils.J. Biol. Chem.284, 14058-14067.

32. Fei, L. &Perrett, S.*(2009). Disulfide bond formation significantly accelerates the assembly of Ure2p fibrils due to proximity of a potential amyloid stretch.J. Biol. Chem.284, 11134-11141.

33. Zhang, H., Loovers, H.M., Xu, L.Q., Wang, M., Rowling, P.J.E., Itzhaki, L.S., Gong, W., Zhou, J.M., Jones, G.W. &Perrett, S.*(2009). Alcohol oxidase (AOX1) from Pichia pastoris is a novel inhibitor of prion propagation and a potential ATPase.Mol. Microbiol.71, 702-716.

34.Perrett, S.*& Jones, G.W.* (2008). Insights into the mechanism of prion propagation.Curr. Opin. Struct. Biol.18, 52-59. (Invited Review)

35. Gao, L., Zhuang, J., Nie, L., Zhang, J., Gu, N., Wang, T.,Perrett, S.*& Yan, X.* (2007). Intrinsic peroxidase-like activity of ferromagnetic nanoparticles.Nature Nanotechnology2, 577-583. (Article) 

Books

1.Perrett S., A.K. Buell & T.P.J.K. Knowles (Editors) “Biological and Bio-inspired Nanomaterials”, 2019,SpringerNature. ISBN: 978-981-13-9790-5.

2. Sunde M., Chapman M., Otzen D. &Perrett S.(Editors), “Functional Amyloids”Biomacromoleculesvol. 7, 2017, MDPI. ISSN: 2218-273X

3.Perrett S.(Editor), “Amyloids in Health and Disease”Essays in Biochemistryvol. 56 (248 pages), 2014, Portland Press. ISBN: 781855781924

Book Chapters

1. Roode, L.W.Y., Schimanovich, U., Wu, S.,Perrett, S.& Knowles, T.P.J. “Protein microgels from amyloid fibril networks.” Biological and Bio-inspired Nanomaterials,Advances in Experimental Medicine and Biologyvol. 1174 (Chapter 7, p. 223-263),2019, Springer Nature.

2. Rees, J.S., Li, X.W.,Perrett, S., Lilley, K.S. & Jackson, A.P. “Selective proteomic proximity labeling assay using tyramide (SPPLAT): A quantitative method for the proteomic analysis of localised membrane-bound protein clusters.”Current Protocols in Protein Sciencevol. 88 (p.19.27.1-19.27.18),2017, Wiley.

(From Sarah Perrett, July 2, 2021)

Contact Us

Tel: 010-64889872

E-Mail: webadmin@ibp.ac.cn

Address: No 15 Datun Road, Chaoyang District, Beijing

Postcode: 100101

Baidu
map