-
Jiangyun Wang, Ph.D, Prof.
-
Principal Investigator
National Laboratory of Biomacromolecules, IBP
Research Interests: To design easy-to-characterize, easy-to-produce, and easy-to-optimize metalloenzymes
Email: jwang@ibp.ac.cn
Tel: 010-64887050
Address: 15 Datun Road, Chaoyang District, Beijing, 100101, China
Chinese personal homepage
- Biography
-
1994 - 1998 B.S., Dept. of Special Class for Gifted Young (Advisor: Prof. Zuyao Chen) Univ. of Science and Technology of China
1998 - 2003 Ph.D., Dept. of Chemistry (Advisor: Prof. Kenneth S. Suslick) Univ. of Illinois at Urbana-Champaign
2003 - 2007 Postdoctoral training, Dept. of Chemistry (Advisor: Prof. Peter G. Schultz) The Scripps Research Institute
2007 - Professor, Institute of Biophysics, Chinese Academy of Sciences
- Awards
-
2013 The 13th China Youth Science and Technology Award
2013 National Outstanding Young Scientists
2014 Asian Photochemical Society Young Scientist Award
2015 Cheung Kong Scholar Young Scholar of the Ministry of Education
2015 Beijing Science and Technology Award
2015 Young top-notch talents of the Organization Department of the Central Committee of the Communist Party of China
2016 The 5th Chinese Chemical Society/Royal Society Young Chemist Award
2016 Young and middle-aged scientific and technological innovation leading talents in the innovative talent promotion plan
2018 National High-level Talents Special Support Program Leading Talents
2018 Special Government Allowances of the State Council
- Membership in Academies & Societies
- Research Interests
-
Metalloenzymes catalyze some of the most challenging reactions, such as the conversion of H2O to O2, O2to H2O, N2to NH3and H+to H2, under mild physiological conditions. As these reactions are of tremendous importance for energy production and green chemistry, they are currently intensively investigated by biophysical chemists. However, these metalloenzymes are usually huge membrane protein complexes, and are hard to produce in large amount for performing biochemical studies, and are difficult to engineer to suit for industrial applications. The central aim in our laboratory is to use small, soluble protein scaffold, and the genetic incorporation of unnatural amino acid to design easy-to-characterize, easy-to-produce, and easy-to-optimize metalloenzymes which catalyze these important reactions with equal or greater efficiency/selectivity than that of the natural systems.
-
Research team members
-
Important research progress in the past five years
1. staff member:
Xiaohong Liu | Professor | |
Fahui Li | Associate researcher | |
Li Jiang | Associate researcher | |
Pengcheng Liu | engineer | |
Qipeng Wu | Secretary of the research group | |
Jiansen Hu | post-doctoral | |
Kaiquan Zhang | post-doctoral | |
Cheng Hu | post-doctoral | |
Zhenyu Lv | post-doctoral | |
Yongze Li | post-doctoral | |
Linhua Tai | post-doctoral | |
Ying Ling | technician | |
Chengzhi Liang | technician |
2. Postgraduate student:
Jiao Chang | doctoral student | |
Yan Xia | doctoral student | |
Xiaolei Zhu | doctoral student | |
Lu Jia | doctoral student | |
Wenqin Tang | doctoral student | |
Minling Yu | International students | |
Ziyi Zhao | Straight postgraduate | |
Quanchang Gu | doctoral student | |
Jikun Gao | Straight postgraduate | |
Ran Zhao | Master's degree candidate | |
Xiaoyu Sun | Master's degree candidate | |
Shaohua Ma | Straight postgraduate | |
Shichen Tang | Straight postgraduate | |
Dandan Sun | Joint cultivation of master's degree students | |
Yutong Liu | Joint cultivation of master's degree students |
1. In 2018, Wang Jiangyun's research group made important progress in the artificial design of light-driven carbon dioxide reductase
//www.wyreworks.com/kyjz/2018kyjz/201811/t20181106_5165515.html
2. In 2018, the research group of Wang Jiangyun, Sun Jinpeng and Liu Aimin jointly published a series of papers in Nature Chemical Biology, clarifying the application of gene-encoded difluorotyrosine in membrane proteins and enzyme catalytic mechanisms
//www.wyreworks.com/kyjz/2018kyjz/201808/t20180822_5058259.html
3. In 2019, Wang Jiangyun's research group made new progress in transforming amino acid oxidase based on gene codon expansion and new bio-orthogonal reaction "S-Click" method
//www.wyreworks.com/kyjz/2019kyjz/201910/t20191008_5404039.html
4. In 2020, WANG Jiangyun's Group Makes Progress in Studying the Preference of GPCR Signal Transduction
http://english.ibp.cas.cn/research_23463/Research_progress/202010/t20201012_244708.html
5. In 2021, the research group of Professor Wang Jiangyun/Zhong Fangrui and Wu Yuzhou made important progress in the design of biocatalytic cross-coupling-light-driven halogenated aromatic hydrocarbon hydroxylation dehalogenase
//www.wyreworks.com/kyjz/zxdt/202101/t20210108_5853979.html
6. In 2021, Wang Jiangyun/Li Yunliang/Zhuang Wei's research group made important progress in the study of the flexibility of enzyme active centers with gene-encoded two-dimensional infrared probes
//www.wyreworks.com/kyjz/zxdt/202103/t20210301_5963635.html
7. Professor WANG Jiangyun's research group and collaborators made the new progress in the study of the phosphorylation barcode mechanism of G protein coupled receptor
http://english.ibp.cas.cn/research_23463/Research_progress/202106/t20210601_271456.html
8. In 2021, Wang Jiangyun/Tian Changlin's research group made important progress in the rational design of photocatalytic CO2 reductase
//www.wyreworks.com/kyjz/zxdt/202104/t20210425_5996822.html
http://www.nsfc.gov.cn/publish/portal0/tab448/info81220.htm
9. In 2021, Wang Jiangyun's research team and collaborators have made significant progress in the study of the conformational distribution of arrestin, a downstream protein regulated by GPCRs detected by smFRET
//www.wyreworks.com/kyjz/zxdt/202106/t20210608_6080508.html
10. In 2021, Wang Jiangyun/Xia Andong/Yu Longjiang's research group made important progress in the rational design of photosensitive proteins for efficient photoinduced electron transfer
//www.wyreworks.com/kyjz/zxdt/202106/t20210616_6108414.html
11. In 2021, Wang Jiangyun/Liu Zhijie/Hua Tian's research group will make important progress in the study of GPCR allosteric regulation mechanism
- Grants
- Selected Publications
-
1. Fu Y, Liu XH, Xia Y, Guo XZ, Guo J, Zhang JS, Zhao WN, Wu YZ,Wang JY*, and Zhong FR*. Whole-cell-catalyzed hydrogenation/deuteration of aryl halides with a genetically repurposed photodehalogenases,Chem. 2023, 9, 1897-1909, DOI: 10.1016/j.chempr.2023.03.006
2. Huang RR, Zhi N, Yu L, Li YY, Wu XY, He JL, Zhu HJ, Qiao JJ, Liu, XH, Tian CL,Wang JY*, and Dong M*. Genetically Encoded Photosensitizer Protein Reduces Iron?Sulfur Clusters of Radical SAM Enzymes,ACS Catal. 2023, 13, 1240?1245, DOI: 10.1021/acscatal.2c05143
3. 3.Xu CG, Zou Q, Tian JH, Li MY, Xing BW, Gong JL,Wang JY*, Huo YX*, and Guo SY*. Simplified Construction of Engineered Bacillus subtilis Host for Improved Expression of Proteins Harboring Noncanonical Amino Acids,ACS Synth. Biol. 2023, 12, 583?595, DOI: 10.1021/acssynbio.2c00604
4. Duan HZ, Hu C, Li YL, Wang SH, Xia Y, Liu XH*,Wang JY*, Chen YX*. Genetically Encoded Phosphine Ligand for Metalloprotein Design,J. Am. Chem. Soc. 2022, 144, 22831?22837, DOI:10.1021/jacs.2c09683
5. Liu XH, Liu PC, Li HJ, Xu Z, Jia L, Xia Y, Yu ML Tang WQ, Zhu XL, Chen C, Zhang YL, Nango E, Tanaka R, Luo FJ, Kato K, Nakajima Y, Kishi S, Yu HX, Matsubara N, Owada S, Tono K, Iwata S, Yu LJ*, Shen JR*,Wang JY*. Excited-state intermediates in a designer protein encoding a phototrigger caught by an X-ray free-electron laser.Nat Chem. 2022, 14(9):1054-1060. DOI: 10.1038/s41557-022-00992-3.
6. Wang P, Zhang G, Xu Z, Chen Z, Liu X, Wang C, Zheng C,Wang JY*, Zhang H*, Yan A*. Whole-cell FRET monitoring of transcription factor activities enables functional annotation of signal transduction systems in living bacteria.J Biol Chem. 2022, 298(8):102258. DOI: 10.1016/j.jbc.2022.102258.
7. Yang K, Yu ML, Zhu XL, Xia Y, Li FH, Li YZ, Liu XH*,Wang JY*. Genetic Incorporation of Fluorescent Amino Acid into Fatty Acid Binding Protein for Fatty Acid Detection.Journal of Molecular Biology. 2022, 434(8): 167498. DOI: 10.1016/j.jmb.2022.167498
8. Han Y, Guo XZ, Zhang TC,Wang JY*, Ye KQ*. Development of an RNA-protein crosslinker to capture protein interactions with diverse RNA structures in cells.RNA. 2022, 28(3):390-399. DOI: 10.1261/rna.078896.121.
9. Cheng RH, Lai R, Peng C, Lopez J, Li ZH, Naowarojna N, Li KL, Wong C, Lee N, Whelan SA, Qiao L, Grinstaff MW,Wang JY, Cui Q*, and Liu PH*. Implications for an Imidazole-2-yl Carbene Intermediate in the Rhodanase-Catalyzed C-S Bond Formation Reaction of Anaerobic Ergothioneine Biosynthesis.ACS Catal. 2021, 11, 6, 3319-3334. DOI: https://doi.org/10.1021/acscatal.0c04886
10. Wang XY, Liu DS, Shen L, Li FF, Li YZ, Yang LY, Xu TD, Tao HC, Yao DQ, Wu LJ, Hirata K, Bohn LM, Makriyannis A, Liu XH, Hua T*, Liu ZJ*, andWang JY*. A Genetically Encoded F-19 NMR Probe Reveals the Allosteric Modulation Mechanism of Cannabinoid Receptor 1.J. Am. Chem. Soc. 2021, 143, 40, 16320-16325. DOI: 10.1021/jacs.1c06847
11. Zheng DD, Tao M, Yu LJ, Liu XH*, Xia AD*,Wang JY*. Ultrafast Photoinduced Electron Transfer in a Photosensitizer Protein.CCS Chem. 2021, 3, 1580-1586. DOI: 10.31635/ccschem.021.202100823
12. Han MJ, He QT, Yang MY,Chen C, Yao YR, Liu XH, Wang YC, Zhu ZL, Zhu KK, Qu CX, Yang F, Hu C, Guo XZ, Zhang DW, Chen CL*, Sun JP* andWang JY*. Single-molecule FRET and conformational analysis of beta-arrestin-1 through genetic code expansion and Se-Click reaction.Chemical Science, 2021,12, 9114-9123, DOI: 10.1039/D1SC02653D
13. Wu EZ, Guo XZ, Teng XY, Zhang RJ, Li FH, Cui Y, Zhang DD, Liu QH, Luo JJ*,Wang JY*, Chen RS*. Discovery of Plasma Membrane-Associated RNAs through APEX-seq.Cell Biochem Biophys. 2021, 79, 905-917. DOI: https://doi.org/10.1007/s12013-021-00991-0
14. Wang YC, Liu PC, Chang J, Xu YP*,Wang JY*. Site-specific selenocysteine incorporation into proteins by genetic engineering.ChemBioChem. 2021, 22, 2918 -2924. DOI: https://doi.org/10.1002/cbic.202100124
15. He QT, Xiao P, Huang SM, Jia YL, Zhu ZL, Lin JY, Yang F, Tao XN, Zhao RJ, Gao FY, Niu XG, Xiao KH,Wang JY*, Jin CW*, Sun JP*& Xiao Yu X*. Structural studies of phosphorylation-dependent interactions between the V2R receptor and arrestin-2.Nat Commun2021,12, 2396. DOI: https://doi.org/10.1038/s41467-021-22731-x
16. Wang L, Zhang J , Han MJ, Zhang L, Chen C, Huang AP, Xie RP, Wang GS, Zhu JR, Wang YC, Liu XH*, Zhuang W*, Li YL*,Wang JY*. A Genetically Encoded Two-Dimensional Infrared Probe for Enzyme Active-Site Dynamics.Angew Chem Int Ed Engl. 2021, 60, 11143 -11147. DOI: https://doi.org/10.1002/anie.202016880
17. Fu Y, Huang J, Wu YZ *, Liu XH*, Zhong FR*, andWang JY*. Biocatalytic Cross-Coupling of Aryl Halides with a Genetically Engineered Photosensitizer Artificial Dehalogenase.J. Am. Chem. Soc. 2021, 143, 2, 617-622. DOI: 10.1021/jacs.0c10882
18. Kang FY, Yu L, Xia Y, Yu ML, Xia L, Wang YC, Yang L, Wang TY, Gong WM, Tian CL*, Liu XH*, andWang JY*. Rational Design of a Miniature Photocatalytic CO2-Reducing Enzyme.ACS Catal. 2021, 11, 9, 5628-5635. DOI: 10.1021/acscatal.1c00287
19. An XJ, Chen C,Wang TY, Huang AP, Zhang DW, Han MJ, Wang JY*. Genetic Incorporation of Selenotyrosine Significantly Improves Enzymatic Activity of Agrobacterium radiobacter Phosphotriesterase.ChemBioChem. 2021, 22, 2535- 2539, DOI: 10.1002/cbic.202000460
20. Zheng ZP, Guo XZ, Yu ML, Wang XY, Lu HG, Li FH,Wang JY*. Identification of Human IDO1 Enzyme Activity by Using Genetically Encoded Nitrotyrosine.ChemBioChem2020 , 21(11):1593 -1596. DOI: 10.1002/cbic.201900735
21. Liu Q, He QT, Lyu X, Yang F, Zhu ZL, Xiao P, Yang Z, Zhang F, Yang Z, Wang X, Sun P, Wang Q, Qu C, Gong Z, Lin J, Xu Z, Song S, Huang S, Guo S, Han M, Zhu K, Chen X, Kahsai A., Xiao K, Kong W, Li F, Ruan K, Li Z, Yu X, Niu X, Jin C,Wang J*& Sun J*. DeSiphering receptor core-induced and ligand-dependent conformational changes in arrestin via genetic encoded trimethylsilyl 1H-NMR probe.Nature Communications. 2020, 11, 4857. DOI: https://doi.org/10.1038/s41467-020-18433-5
22. Hu C, Liu X,Wang JY*. Electrostatics affect the glow.Science. 2020, 367(6473):26. DOI: 10.1126/science.aba0571.
23. Zheng DD, Zhang Y, Liu XH,Wang JY*. Coupling natural systems with synthetic chemistry for light-driven enzymatic biocatalysis.Photosynth Res. 2020, 143(2):221-231. DOI: 10.1007/s11120-019-00660-7
24. Huang SM, Yang F, Cai BY, He QT, Liu Q, Qu CX, Han MJ, Kong W, Jia YL, Li F, Yu X, Sun JP*,Wang JY*. Genetically Encoded Fluorescent Amino Acid for Monitoring Protein Interactions through FRET.Anal Chem. 2019, 91(23):14936-14942. DOI: 10.1021/acs.analchem.9b03305.
25. Xia L, Han MJ, Zhou L, Huang A, Yang Z, Wang T, Li F, Yu L, Tian C, Zang Z, Yang QZ, Liu C, Hong W, Lu Y, Alfonta L,Wang JY*. S-Click Reaction for Isotropic Orientation of Oxidases on Electrodes to Promote Electron Transfer at Low Potentials.Angew Chem Int Ed Engl. 2019, 58(46):16480-16484.DOI: 10.1002/anie.201909203.
26. Li K, Hou X, Li R, Bi W, Yang F, Chen X, Xiao P, Liu T, Lu T, Zhou Y, Tian Z, Shen Y, Zhang Y,Wang JY, Fang H, Sun J*, Yu X*. Identification and structure-function analyses of an allosteric inhibitor of the tyrosine phosphatase PTPN22.J Biol Chem. 2019, 294(21):8653-8663. DOI: 10.1074/jbc.RA118.007129.
27. Yu Y, Liu X,Wang JY*. Expansion of Redox Chemistry in Designer Metalloenzymes.Acc Chem Res. 2019,52(3):557-565. DOI: 10.1021/acs.accounts.8b00627.
28. Wang L, Chen X, Guo X, Li J, Liu Q, Kang F, Wang X, Hu C, Liu H, Gong W, Zhuang W, Liu X*,Wang JY*. Significant expansion and red-shifting of fluorescent protein chromophore determined through computational design and genetic code expansion.Biophys Rep. 2018, 4(5):273-285. DOI: 10.1007/s41048-018-0073-z.
29. Liu X, Kang F, Hu C, Wang L, Xu Z, Zheng D, Gong W, Lu Y, Ma Y,Wang JY*. A genetically encoded photosensitizer protein facilitates the rational design of a miniature photocatalytic CO2-reducing enzyme.Nat Chem. 2018, 10 (12):1201-1206. DOI: 10.1038/s41557-018-0150-4.
30. Mu Z, Zou Z, Yang Y, Wang W, Xu Y, Huang J, Cai R, Liu Y, Mo Y, Wang B, Dang Y, Li Y, Liu Y, Jiang Y, Tan Q, Liu X, Hu C, Li H, Wei S, Lou C, Yu Y,Wang JY*. A genetically engineered Escherichia coli that senses and degrades tetracycline antibiotic residue.Synth Syst Biotechnol. 2018, 3(3):196-203. DOI: 10.1016/j.synbio.2018.05.001.
31. Dong J, Li F, Gao F, Wei J, Lin Y, Zhang Y, Lou J, Liu G, Dong Y, Liu L, Liu H,Wang JY, Gong W*. Structure of tRNA-Modifying Enzyme TiaS and Motions of Its Substrate Binding Zinc Ribbon.J Mol Biol. 2018, 430(21):4183-4194. DOI: 10.1016/j.jmb.2018.08.015.
32. Yang F, Xiao P, Qu CX, Liu Q, Wang LY, Liu ZX, He QT, Liu C, Xu JY, Li RR, Li MJ, Li Q, Guo XZ, Yang ZY, He DF, Yi F, Ruan K, Shen YM, Yu X, Sun JP*,Wang JY*. Allosteric mechanisms underlie GPCR signaling to SH3-domain proteins through arrestin.Nat Chem Biol. 2018, 14(9):876-886. DOI: 10.1038/s41589-018-0115-3.
33. Zhang J, Wang L, Zhang J, Zhu J, Pan X, Cui Z,Wang JY*, Fang W*, Li Y*. Identifying and Modulating Accidental Fermi Resonance: 2D IR and DFT Study of 4-Azido-l-phenylalanine.J Phys ChemB. 2018, 122(34):8122-8133. DOI: 10.1021/acs.jpcb.8b03887.
34. Li J, Griffith WP, Davis I, Shin I,Wang JY, Li F, Wang Y, Wherritt DJ, Liu A*. Cleavage of a carbon-fluorine bond by an engineered cysteine dioxygenase.Nat Chem Biol. 2018, 14(9):853-860. DOI: 10.1038/s41589-018-0085-5.
35. Zhang F, Zhou Q, Yang G, An L, Li F*,Wang JY*. A genetically encoded 19F NMR probe for lysine acetylation.Chem Commun (Camb). 2018, 54(31):3879-3882. DOI: 10.1039/c7cc09825a.
36. Chen L, Naowarojna N, Song H, Wang S,Wang JY, Deng Z, Zhao C, Liu P*. Use of a Tyrosine Analogue To Modulate the Two Activities of a Nonheme Iron Enzyme OvoA in Ovothiol Biosynthesis, Cysteine Oxidation versus Oxidative C-S Bond Formation.J Am Chem Soc. 2018, 140(13):4604-4612. DOI: 10.1021/jacs.7b13628.
37. Yu Y, Hu C, Xia L, andWang JY*. Artificial Metalloenzyme Design with Unnatural Amino Acids and Non-Native Cofactors.ACS Catal. 2018, 8 (3):1851-1863. DOI:??10.1021/acscatal.7b03754
38. Pan Y, Zhang H, Zheng Y, Zhou J, Yuan J, Yu Y,Wang JY*. Resveratrol Exerts Antioxidant Effects by Activating SIRT2 To Deacetylate Prx1.Biochemistry. 2017, 56(48):6325-6328. DOI: 10.1021/acs.biochem.7b00859.
39. Lu J, Zhang H, Chen X, Zou Y, Li J, Wang L, Wu M, Zang J, Yu Y, Zhuang W*, Xia Q*,Wang JY*. A small molecule activator of SIRT3 promotes deacetylation and activation of manganese superoxide dismutase.Free Radic Biol Med. 2017, 112:287-297. DOI: 10.1016/j.freeradbiomed.2017.07.012.
40. Hu C, Yu Y,Wang JY*. Improving artificial metalloenzymes' activity by optimizing electron transfer.Chem Commun (Camb). 2017, 53(30):4173-4186. DOI: 10.1039/c6cc09921a.
41. Yang F, Yu X, Liu C, Qu CX, Gong Z, Liu HD, Li FH, Wang HM, He DF, Yi F, Song C, Tian CL, Xiao KH,Wang JY*, Sun JP*. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and19F-NMR.Nat Commun. 2015, 6:8202. DOI: 10.1038/ncomms9202.
42. Yu Y, Zhou Q, Wang L, Liu X, Zhang W, Hu M, Dong J, Li J, Xiaoxuan L, Ouyang H, Li H, Gao F, Gong W, Lu Y*,Wang JY*. Significant Improvement of Oxidase Activity through the Genetic Incorporation of a Redox-active Unnatural Amino Acid.Chem Sci. 2015, 6(7): 3881-3885. DOI: 10.1039/C5SC01126D
43. Yu Y, Cui C, Liu X, Petrik ID,Wang JY*, Lu Y*. A Designed Metalloenzyme Achieving the Catalytic Rate of a Native Enzyme.J Am Chem Soc. 2015, 137(36):11570-11573. DOI: 10.1021/jacs.5b07119.
44. Yu Y, Hu C, Liu X,Wang JY*. Synthetic Model of the Oxygen-Evolving Center: Photosystem II under the Spotlight.Chembiochem. 2015, 16(14):1981-1983. doi: 10.1002/cbic.201500302.
45. He T, Gershenson A, Eyles SJ, Lee YJ, Liu WR,Wang JY, Gao J, Roberts MF*. Fluorinated Aromatic Amino Acids Distinguish Cation-π Interactions from Membrane Insertion.J Biol Chem. 2015, 290(31):19334-19342. DOI: 10.1074/jbc.M115.668343.
46. Lv X, Yu Y, Zhou M, Hu C, Gao F, Li J, Liu X, Deng K, Zheng P, Gong W, Xia A*,Wang JY*. Ultrafast photoinduced electron transfer in green fluorescent protein bearing a genetically encoded electron acceptor.J Am Chem Soc. 2015, 137(23):7270-7273. DOI: 10.1021/jacs.5b03652.
47. Wang T, Zhou Q*, Li F, Yu Y, Yin X*,Wang JY*. Genetic Incorporation of N(ε)-Formyllysine, a New Histone Post-translational Modification.Chembiochem. 2015, 16(10):1440-1442. DOI: 10.1002/cbic.201500170.
48. Zheng Y, Yu F, Wu Y, Si L, Xu H, Zhang C, Xia Q, Xiao S, Wang Q, He Q, Chen P,Wang JY, Taira K, Zhang L, Zhou D*. Broadening the versatility of lentiviral vectors as a tool in nucleic acid research via genetic code expansion.Nucleic Acids Res. 2015, 43(11): e73. DOI: 10.1093/nar/gkv202.
49. Li F, Dong J, Hu X, Gong W, Li J, Shen J, Tian H,Wang JY*. A covalent approach for site-specific RNA labeling in Mammalian cells.Angew Chem Int Ed Engl.2015, 54(15):4597-4602. DOI: 10.1002/anie.201410433.
50. Yu Y, Lv X, Li J, Zhou Q, Cui C, Hosseinzadeh P, Mukherjee A, Nilges MJ,Wang JY*, Lu Y*. Defining the role of tyrosine and rational tuning of oxidase activity by genetic incorporation of unnatural tyrosine analogs.J Am Chem Soc. 2015 Apr 15;137(14):4594-4597. DOI: 10.1021/ja5109936.
51. Liu X, Jiang L, Li J, Wang L, Yu Y, Zhou Q, Lv X, Gong W, Lu Y,Wang JY*. Significant expansion of fluorescent protein sensing ability through the genetic incorporation of superior photo-induced electron-transfer quenchers.J Am Chem Soc. 2014, 136(38):13094-13097. DOI: 10.1021/ja505219r.
52. Pan Y, Jin JH, Yu Y*,Wang JY*. Significant enhancement of hPrx1 chaperone activity through lysine acetylation.Chembiochem. 2014, 15(12):1773-1776. DOI: 10.1002/cbic.201402164.
53. Hu C, Chan SI, Sawyer EB, Yu Y,Wang JY*. Metalloprotein design using genetic code expansion.Chem Soc Rev. 2014, 43(18):6498-6510. DOI: 10.1039/c4cs00018h.
54. Wu FC, Zhang H, Zhou Q, Wu M, Ballard Z, Tian Y,Wang JY*, Niu ZW*, and Huang Y. Expanding the genetic code for site-specific labelling of tobacco mosaic virus coat protein and building biotin-functionalized virus-like particles.Chem. Commun. 2014, 50, 4007-4009. DOI: 10.1039/c3cc49137d .
55. Bi K, Zheng Y, Gao F, Dong J,Wang JY, Wang Y*, Gong W*. Crystal structure of E. coli arginyl-tRNA synthetase and ligand binding studies revealed key residues in arginine recognition.Protein Cell. 2014, 5(2):151-159. DOI: 10.1007/s13238-013-0012-1.
56. Lin YW*,Wang JY*& Lu Y*. Functional tuning and expanding of myoglobin by rational protein design.Science China Chemistry.2014, 57(3): 346-355. DOI: 10.1007/s11426-014-5063-5
57. Zheng Y, Lv X,Wang JY*. A genetically encoded sulfotyrosine for VHR function research.Protein Cell. 2013, 4(10):731-734. DOI: 10.1007/s13238-013-3907-y.
58. Lin YW,Wang JY*. Structure and function of heme proteins in non-native states: a mini-review.J Inorg Biochem. 2013, 129:162-171. DOI: 10.1016/j.jinorgbio.2013.07.023.
59. Pan C, Liu HD, Gong Z, Yu X, Hou XB, Xie DD, Zhu XB, Li HW, Tang JY, Xu YF, Yu JQ, Zhang LY, Fang H, Xiao KH, Chen YG,Wang JY, Pang Q, Chen W*, Sun JP*. Cadmium is a potent inhibitor of PPM phosphatases and targets the M1 binding site.Sci Rep. 2013, 3: 2333. DOI: 10.1038/srep02333.
60. Li F, Zhang H, Sun Y, Pan Y, Zhou J,Wang JY*. Expanding the genetic code for photoclick chemistry in E. coli, mammalian cells, and A. thaliana.Angew Chem Int Ed Engl. 2013, 52(37):9700-9704. DOI: 10.1002/anie.201303477.
61. Lin YW, Sawyer EB*,Wang JY*. Rational heme protein design: all roads lead to Rome.Chem Asian J. 2013, 8(11):2534-2544. DOI: 10.1002/asia.201300291.
62. Liu X, Li J, Hu C, Zhou Q, Zhang W, Hu M, Zhou J,Wang JY*. Significant expansion of the fluorescent protein chromophore through the genetic incorporation of a metal-chelating unnatural amino acid.Angew Chem Int Ed Engl. 2013, 52(18):4805-4809. DOI: 10.1002/anie.201301307.
63. Li F, Shi P, Li J, Yang F, Wang T, Zhang W, Gao F, Ding W, Li D, Li J, Xiong Y, Sun J, Gong W*, Tian C,Wang JY*. A genetically encoded 19F NMR probe for tyrosine phosphorylation.Angew Chem Int Ed Engl. 2013, 52(14):3958-3962. DOI: 10.1002/anie.201300463.
64. Xu X, Hu X*,Wang JY*. A new synthetic protocol for coumarin amino acid.Beilstein J Org Chem. 2013, 9:254-259. DOI: 10.3762/bjoc.9.30.
65. Zhou Q, Hu M, Zhang W, Jiang L, Perrett S, Zhou J,Wang JY*. Probing the function of the Tyr-Cys cross-link in metalloenzymes by the genetic incorporation of 3-methylthiotyrosine.Angew Chem Int Ed Engl. 2013, 52(4):1203-1207. DOI: 10.1002/anie.201207229.
66. Yu Z, Pan Y, Wang Z,Wang JY*, Lin Q*. Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells.Angew Chem Int Ed Engl. 2012, 51(42):10600-10604. DOI: 10.1002/anie.201205352.
67. Liu X, Li J, Dong J, Hu C, Gong W*,Wang JY*. Genetic incorporation of a metal-chelating amino acid as a probe for protein electron transfer.Angew Chem Int Ed Engl. 2012, 51(41):10261-10265. DOI: 10.1002/anie.201204962.
68. Hua T, Wu D, Ding W,Wang JY, Shaw N*, Liu ZJ*. Studies of human 2,4-dienoyl CoA reductase shed new light on peroxisomal β-oxidation of unsaturated fatty acids.J Biol Chem. 2012, 287(34):28956-28965. DOI: 10.1074/jbc.M112.385351.
69. Liu X, Yu Y, Hu C, Zhang W, Lu Y*,Wang JY*. Significant increase of oxidase activity through the genetic incorporation of a tyrosine-histidine cross-link in a myoglobin model of heme-copper oxidase.Angew Chem Int Ed Engl. 2012, 51(18):4312-4316. DOI: 10.1002/anie.201108756.
70. Charbon G,Wang JY, Brustad E, Schultz PG, Horwich AL, Jacobs-Wagner C, Chapman E*. Localization of GroEL determined by in vivo incorporation of a fluorescent amino acid.Bioorg Med Chem Lett. 2011, 21(20):6067-6070. DOI: 10.1016/j.bmcl.2011.08.057.
71. Charbon G, Brustad E, Scott KA,Wang JY, Lobner-Olesen A, Schultz PG, Jacobs-Wagner C, Chapman E*. Subcellular protein localization by using a genetically encoded fluorescent amino acid.Chembiochem. 2011, 12(12):1818-1821. DOI: 10.1002/cbic.201100282.
72.Wang JY*, Zhang W, Song W, Wang Y, Yu Z, Li J, Wu M, Wang L, Zang J, Lin Q*. A biosynthetic route to photoclick chemistry on proteins.J Am Chem Soc. 2010, 132 (42): 14812 -14818. DOI: 10.1021/ja104350y.
73. Mills JH, Lee HS, Liu CC,Wang JY, Schultz PG*. A genetically encoded direct sensor of antibody-antigen interactions.Chembiochem. 2009, 10(13):2162-2164. DOI: 10.1002/cbic.200900254.
74. Peters FB, Brock A,Wang JY, Schultz PG*. Photocleavage of the polypeptide backbone by 2-nitrophenylalanine.Chem Biol. 2009, 16(2):148-152. DOI: 10.1016/j.chembiol.2009.01.013.
75. Guo J,Wang JY, Lee JS, Schultz PG*. Site-specific incorporation of methyl- and acetyl-lysine analogues into recombinant proteins.Angew Chem Int Ed Engl. 2008, 47(34):6399-6401. DOI: 10.1002/anie.200802336.
76. Guo J,Wang JY, Anderson JC, Schultz PG*. Addition of an alpha-hydroxy acid to the genetic code of bacteria.Angew Chem Int Ed Engl. 2008, 47(4):722-725. DOI: 10.1002/anie.200704074
77.Wang JY, Rosenblatt MM, Suslick KS*. NMR structures of peptide--RuII(porphyrin) complexes.J Am Chem Soc. 2007, 129(46):14124-14125. DOI: 10.1021/ja075532v
78.Wang JY, Schiller SM, Schultz PG*. A biosynthetic route to dehydroalanine-containing proteins.Angew Chem Int Ed Engl. 2007, 46(36):6849-51. DOI: 10.1002/anie.200702305
79.Wang JY, Xie J, Schultz PG*. A genetically encoded fluorescent amino acid.J Am Chem Soc. 2006, 128(27):8738-8739. DOI: 10.1021/ja062666k
80. Rosenblatt MM,Wang JY, Suslick KS*. De novo designed cyclic-peptide heme complexes.Proc Natl Acad Sci U S A. 2003, 100(23):13140-13145. DOI: 10.1073/pnas.2231273100
81.Wang JY, Luthey-Schulten ZA, Suslick KS*. Is the olfactory receptor a metalloprotein?Proc Natl Acad Sci U S A. 2003, 100(6):3035-3039. DOI: 10.1073/pnas.262792899
(From Jiangyun Wang, October 12, 2023)