Xi Hu, Fangyuan Li, Fan Xia, Xia Guo, Nan Wang, Lili Liang, Bo Yang, Kelong Fan, Xiyun Yan and Daishun Ling*
Abstract
Recent advances in nanomedicine have facilitated the development of potent nanomaterials with intrinsic enzyme-like activities (nanozymes) for cancer therapy. However, it remains a great challenge to fabricate smart nanozymes that precisely perform enzymatic activity in tumor microenvironment without inducing off-target toxicity to surrounding normal tissues. Herein, we report on designed fabrication of biodegradation-medicated enzymatic activity-tunable molybdenum oxide nanourchins (MoO3–xNUs), which selectively perform therapeutic activity in tumor microenvironment via cascade catalytic reactions, while keeping normal tissues unharmed due to their responsive biodegradation in physiological environment. Specifically, the MoO3–xNUs first induce catalase (CAT)-like reactivity to decompose hydrogen peroxide (H2O2) in tumor microenvironment, producing a considerable amount of O2for subsequent oxidase (OXD)-like reactivity of MoO3–xNUs; a substantial cytotoxic superoxide radical (·O2–) is thus generated for tumor cell apoptosis. Interestingly, once exposed to neutral blood or normal tissues, MoO3–xNUs rapidly lose the enzymatic activity via pH-responsive biodegradation and are excreted in urine, thus ultimately ensuring safety. The current study demonstrates a proof of concept of biodegradation-medicated in vivo catalytic activity-tunable nanozymes for tumor-specific cascade catalytic therapy with minimal off-target toxicity.
最新重要论文
Biodegradation-Mediated Enzymatic Activity-Tunable Molybdenum Oxide Nanourchins for Tumor-Specific Cascade Catalytic Therapy,J Am Chem Soc, 22 Jan 2020
Journal of the American Chemical Society, 22 January, 2020,DOI:https://doi.org/10.1021/jacs.9b13586
Biodegradation-Mediated Enzymatic Activity-Tunable Molybdenum Oxide Nanourchins for Tumor-Specific Cascade Catalytic Therapy
Xi Hu, Fangyuan Li, Fan Xia, Xia Guo, Nan Wang, Lili Liang, Bo Yang, Kelong Fan, Xiyun Yan and Daishun Ling*
Abstract
Recent advances in nanomedicine have facilitated the development of potent nanomaterials with intrinsic enzyme-like activities (nanozymes) for cancer therapy. However, it remains a great challenge to fabricate smart nanozymes that precisely perform enzymatic activity in tumor microenvironment without inducing off-target toxicity to surrounding normal tissues. Herein, we report on designed fabrication of biodegradation-medicated enzymatic activity-tunable molybdenum oxide nanourchins (MoO3–xNUs), which selectively perform therapeutic activity in tumor microenvironment via cascade catalytic reactions, while keeping normal tissues unharmed due to their responsive biodegradation in physiological environment. Specifically, the MoO3–xNUs first induce catalase (CAT)-like reactivity to decompose hydrogen peroxide (H2O2) in tumor microenvironment, producing a considerable amount of O2for subsequent oxidase (OXD)-like reactivity of MoO3–xNUs; a substantial cytotoxic superoxide radical (·O2–) is thus generated for tumor cell apoptosis. Interestingly, once exposed to neutral blood or normal tissues, MoO3–xNUs rapidly lose the enzymatic activity via pH-responsive biodegradation and are excreted in urine, thus ultimately ensuring safety. The current study demonstrates a proof of concept of biodegradation-medicated in vivo catalytic activity-tunable nanozymes for tumor-specific cascade catalytic therapy with minimal off-target toxicity.
文章链接:https://pubs.acs.org/doi/10.1021/jacs.9b13586